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ABSTRACT

The simple, modular Lie algebras of Zassenhaus have peculiar features
in characteristic three. Their second cohomology groups are larger than
in characteristic p > 3, and they possess a non-degenerate associative
form. These properties are reflected in the presentations of certain loop
algebras of these algebras, that arise naturally in analogy with the graded
Lie algebra associated to the Nottingham group with respect to its lower
central series.

Introduction

In [Carl] we studied the graded Lie algebra L associated to the Nottingham
group in characteristic p > 3, from the point of view of providing a (finite)
presentation of it. L is a loop algebra, with respect to a suitable grading, of the
Witt algebra W;. The latter has a one-dimensional Schur multiplier. Therefore
the corresponding loop algebra M of the universal covering W1 of Wy has an
infinite-dimensional centre. As M is finitely generated, and M/Z(M) = L, by
a result of B. H. Neumann ([Neu] or [Rob, 2.2.3]) the algebra L is not finitely
presented. We proved in [Carl], however, that M is finitely presented.

When p is 3, the Witt algebra W is isomorphic to si(2), and has trivial Schur
multiplier. Still, the loop algebra L has a central extension M by an infinite-
dimensional centre which is finitely presented. In this case, the cocycles needed
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to construct Z(M) are the products of the Killing form on sl(2) and the cyclic
cohomology (see below) on the polynomial part, in a transposition of the theory
of [Gar] to the case of positive characteristic. This is dealt with in [Car2].

In [Carl] we studied more generally loop algebras of the Zassenhaus algebras
W, in characteristic p > 3. The theory is exactly the same as in the case n = 1.

It is the purpose of this paper to study finite presentations of the analogous
loop algebras of the Zassenhaus algebras W, in characteristic 3, for n > 1. As
we will see, these algebras combine the features of the two cases described above.
The cohomology of these loop algebras could be calculated with the methods
developed by Zusmanovich in [Zusl] (see also [Zus2]); however, Zusmanovich
considers loop algebras of Zassenhaus algebras only in characteristic greater than
3. We will therefore give a brief self-contained, elementary account of the matter
here, stressing in particular the role played by the invariant form on W,.

It is well known (see [Far2] and [Dzhu]) that the Schur multiplier of W, has
dimension n — 1 in characteristic 3; as above, we obtain infinitely many cocycles
for the loop algebra L. We call these the finite cohomology cocycles (which
are nonclassical in the terminology of Zusmanovich).

The Killing form of W, is zero, for n > 1; however, because of the characteristic
3, the algebra W,, has a nondegenerate associative form {Farl]. This enables us,
as in [Gar] and [Car2], to use the cyclic cohomology of the polynomial part of the
loop algebra L to construct infinitely many more cocycles on L. We call these
the loop cocycles (these are the classical ones according to Zusmanovich).

We prove that the central extension M of L obtained via the finite cohomology
and loop cocycles is finitely presented. Note that by the result of B. H. Neumann
mentioned above, this implies that all these cocycles generate a subspace of finite
codimension in the second cohomology group of L (and also yields an alterna-
tive method for calculating the second cohomology group of W, ); one could see
with the methods of Zusmanovich that these cocycles really exhaust the whole
cohomology group.

Our proofs basically follow the pattern of {Carl], to which we refer. An argu-
ment similar to one used in [CMNS] is employed to determine the occurrence of
the loop cocycles.

We are grateful to Mike Newman for reading the manuscript and suggesting
several corrections.

Preliminaries

We use [Jac] and [StrFar] as general references for Lie algebras. A good reference
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for the facts about cohomology, central extensions and universal coverings that
we will be using is [Gar].

At one point we will use Lucas’ theorem [Lucas], which states that if the two
nonnegative integers a and b are written p-adically

a=ao+ap+azp’ + - +anp”, b=bo+bip+bap® + -+ bnp”,

so that 0 < a;,b; < p, then

§=11(5) o

For a prime-power ¢, we write I, for the field with ¢ elements. We will use

Kronecker’s delta

1 ifa=1b,
0 otherwise.

amm={

We will use several times without explicit mention the generalized Jacobi iden-
tity

blyg- -l = Zn%(—l)" (e sve g

1=

The Zassenhaus algebras and their loop algebras

The Zassenhaus algebras are defined as algebras of special derivations of algebras

of divided powers in one variable [StrFar], and can be regarded abstractly as
vector spaces

W, =W(l;n)={y;: -1<i<q-2},

of dimension ¢ over the field F, with p elements, p an odd prime, and ¢ = p*,
with the product defined by

st = () (47 e

These algebras are graded over the integers, weighting the y; by their indices.
From now on, we will take p = 3, and n > 1. The corresponding theory for
p > 3 is dealt with in [Carl], and that for p =3 and n = 1 in [Car2).
The original definition by Zassenhaus regarded W, as an algebra over F,, with
basis e,, for o € F,, and multiplication defined by

ea; e8] = (B — @) - eatp-



64 A. CARANTI Isr. J. Math.

A connection between the two presentations, which will be handy later, is given
by the formulas

(5-0) { Y-1= €0+ 2, €ar

yi=—y 09 e, fori# -1

We will consider the loop algebra of W, with respect to a particular grading,
as in [Carl]. This is a grading over a cyclic group of order ¢ — 1, and it is derived
from the one over the integers by declaring y_;1 and y,—2 to be of weight 1. In
other words, we are viewing modulo ¢ — 1 the opposite grading to the above
grading over the integers.

Thus y,—; acquires weight 4 — 1 in this grading, for 2 < ¢ < g, and y_; acquires
weight 1. Therefore all homogeneous component have dimension 1, except that
the i-th one, for i = 1 {mod ¢ — 1), has dimension 2, and it is spanned by y_;
and y,_o.

Now consider the loop algebra of W,, with respect to the latter grading. That
is, take first the Lie algebra

W, ® i),

where F,[t] is a polynomial algebra, and consider the subalgebra L generated by
the two elements

$=y—1®t, y:yq—2®t-

One easily sees that the action of the two generators z and y on L is defined as
follows. Define formally an element vg with the property

[voz] = -z,  [woy] =,

and elements v;, for i > 0,
v = [Vi—12yT--- ).
q-3
Then we have, for i > 0,

lvizyy] = [vizyzy] = --- = [vizyz---zy] =0,
qg—4
[v1-+1y:n] = [vit12y],

[vi+122] = [vit1yy] = 0.
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The finite cohomology cocycles

We give here, for the convenience of the reader, a brief treatment of the second
cohomology group of W, in characteristic 3, in a form that is convenient for our
purposes. This cohomology group is discussed in [Far2] and [Dzhu].

One sees readily that the following maps are 2-cocycles for W,, in characteristic
p = 3 and for n > 1, with respect to the presentation of Zassenhaus,

Omleq,ep) = asmé(a + 4,0},

where 1 < m < n. Independence in cohomology follows from the linear indepen-
dence of the distinct field automorphisms of Fzn .

We rewrite these cocycles in terms of the y;, using formulas (y-¢). We get, first
for 4,5 # —1,

$m(yiy;) = D 0?72 ()t 90"
[s3
— (_1)j+1 ZQZq-i—j+3"‘~4

a
= (—1)’H! Z ad—i—i+3" -3
[e4

(—l)jH{ -1 ifg—1dividesg—i—j+3™ -3,
0 otherwise.

Nowg—1]g—i—7+3™ -3 wheni+j=3"—-2,and wheni+j=¢g+3™—3.
There are no other possibilities, as i + 7 < 2q — 4. Therefore

(=17 ifit+j=3m-2,
d)m(yiayj) = (—l)j ifi+j=q+3™-3,
0 otherwise.
Now the map '
O (yi, yi) =
(v 33) { 0 otherwise

is a coboundary, as
O (u, v) = h{[uv]),

where h is the linear map h: L — F3 defined by h(y;) = —4(i,3™ —2). We obtain
that ¥, = ¢m — 0, is a cocycle, for 1 < m < n, where

(-1)7 ifi4+j=q+3™ -3,

0 otherwise.

bl ) = {
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The same formulas actually hold also when ¢ or j take the value —1, as the
extra ey does not play a role. We have thus recovered the cocycles of [Dzhu,
Theorem 2.

Take Z to be an abelian Lie algebra with basis

21,225+ ..32n-1,
and construct the universal covering W,, of W,, as a central extension
0-Z->W,->W, >0,

with multiplication of (preimages of) y; and y; in Wn defined by

n—1

[yiyj] + Z wm(yi,yj) * Zm-
m=1

The grading over the integers of W, extends to Wn, and 2, acquires weight
g+ 3™ — 3 in it. As these weights are distinct, and do not occur in W, itself,
we see that /Vl7n is perfect. (This shows once more that the cocycles v,,, for
1 < m < n, are independent in cohomology.)

In the opposite grading modulo ¢ — 1 of the grading over the integers, z,,
acquires weight ¢ — 3™ + 1 = g — (3™ — 1), that is, the same as yzm_s.

Each of the cocycles 1 will yield infinitely many cocycles of L, the loop algebra
of W,,. We call these cocycles of L the finite cohomology cocycles, because
of the way they arise. The extension M of L via all these cocycles can also be
obtained as a loop algebra of /Wn, as in the previous section. In the next section
we will show that M has infinitely many more cocycles, arising from the loop
process.

The loop cocycles for the loop algebra

It is shown in [Farl] that the following defines an associative form on W, in
characteristic 3:

(Y, y5) = (-17H8( + 35,4 - 3).
By this we mean that 7 is bilinear and symmetric, and that for u,v,w € W,, we
have
n({uv], w) = n(u, [vw)).
Now consider the following bilinear maps, for ¢ > 0,
Oap: Fp[t] x Fplt] = F,
(t, ) — j - 8(i + j, ap).
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These are easily seen to be elements (actually a basis) of the first cyclic cohomol-
ogy group of F,[t], as they satisfy the identity

Oap(Uv, W) + Oop(vw, u) + ogp(wu,v) =0

(see for instance [Zusl]). As shown in [Kas], one can generalize the arguments of
[Gar] by using the first cyclic cohomology group.

In fact, proceed as in [Gar] and [Car2], and combine 7 with the o to get the
following cocycles on the loop algebras L or M (remember that we are working
in characteristic p = 3):

T3a(yi®t>\(q—l)—i, y; ® tu(q-l)—j)
= n(yi, y;) - 03 (X477 (a1
= (17" -6(i+ 4,9 - 3)-
(= —w)-8(Mg—1)~i+p(g—1) - j,3a)
=(=1)" (G +u) 0 +59-3)- (A +p)g—1) ~ (i +7),3a),

where we have used the fact that {+j = g —3 is even. Note that (A +p)(¢—1) =
i+ j+3a = q— 3+ 3a is divisible by 3, so that A + 1 = 3b for some b. It follows
that the values of a in the above for which the 73, do not obviously vanish on L
are given by

3a=3b(g—1)—q+3=29+3(¢—1)(b-1).

The first few values of 3a are thus 2¢,5q — 3,8¢ — 6, . ..

We call the cocycles 73, corresponding to these values of a the loop cocycles
of L. To show that they are linearly independent in the second cohomology group
of M, note the calculation, for i = (¢ — 3)/2, any b > 1, and the corresponding
value of a as above,

T3a(ys ® 07D, g @ ¢DEN) = ()
£0.
Now the elements y; ® t4~Y~% and y; ® tG>*~D~1)~J commute in M, and there

is one value of a for which the cocycle 73, does not vanish on the corresponding
pair. Independence follows.
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The presentation

Let now N be the central extension of L via the finite cohomology cocycles and
the loop cocycles 73,. In the rest of the paper we will show that N is finitely
presented. As remarked in the Introduction, a result of B. H. Neumann implies
that the finite cohomology cocycles and the loop cocycles span a subspace of
finite codimension in the second cohomology group of L.

It is not difficult now to write down the action of the generators z and y on
N, starting from the presentation of L, and keeping into account the cocycles
we have added. Keeping the notation we have already employed for L, and thus
slightly abusing it, define formally an element vy with the property

[voz] = —=, [voy) =y,

and elements v;, for ¢ > 0,
v = [vic1zy - - - ).
q—3

Write also 6; = [v;yz] — [v;zy).
Then we have, for i > 0,

( [vizyz---zy] =0, for0<j<g—4,and

J

j#£q-3" =2 for1<m<n,
(Rels) Mwiﬁim—bmgﬁiwbﬁ,bngm<m
[vig122] = [vit19y] = 0,
[0:z] = [0:y) = O,
L 6;: =0 fori#2 (mod 3).

Now consider the Lie algebra @ given by the presentation

Q=<%%[wxm%%

J
for0<j<q-4,andj#qg—-3"-2,forl<m<n
yrg---zyz], forl<m<n

q—3m-2

(Pres) yz---z,

q

[yx...myx...xyx]’

Tyz---Tyzz| =[yg---TYZT- - TTYT >
q-1 q-3 q-1 q-3



Vol. 110, 1999 LOOP ALGEBRAS OF ZASSENHAUS ALGEBRAS 69

Note that the relations in (Pres) are a subset of those of (Rels). We want to
show that @ is isomorphic to N, by showing that the defining relations (Pres) of
Q@ imply all of (Rels).

We follow the pattern of [Carl], omitting the steps that are identical, and
dealing only with the peculiarities for p = 3.

We have immediately

O=yzz--zlyeyll = —[y - -z vy,
g—3m-3 q—3m—2

so that [yz z-- -z y] is central for all m. The expansion
e —
g—3m—-2

0=lve slve -zl
(-1)/2  (g-1)/2
yields the relation [vizy] = [v1yz], or 6; = 0.
So we can suppose (Rels) are verified for values less than some i > 2. Let

v = v; € Qj(q—1)- In [Carl] we proved by induction on j

[vzyz - zy] =0

J

for0<j<qg—4,and j #q—3"—2, for 1 <m < n. For these special values
we now show

[vzy -z yz)=lvzy z---z zy]=[vzy z---z yy] = 0.
q—3m-2 q—-3m -2 q—3m—2
Proving [vzy z---z yy] = 0 is straightforward, as in [Carl]. For the rest, let
g—3m—2
j=q—3"-2forl1 <m<mn.
We begin, as in [Carl], with

0=[vzly z---z 9]

qg—3m—1
=lvely g~z lyl - lozyly -z
g—3m—1 q—3m—1

=fomy 2z
q—-3m—1

— (=173 2(g— 3™ _(—1)a-3"-1
(1) (¢—3" - Dvzy g---z yz] — (-1) [vzy z---z Y]
q—3m -2 q—3m—1
=—{vzy g---z zy]+ vy 2 - - - T yz|.
q—3m-2 q—3m -2
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Now we want to prove that the two commutators vanish separately. The ar-
gument of [Carl] for m = 1 works also in characteristic 3, so we have to consider
the case m > 1, for which there is no counterpart in [Carl]. Here and in the
following, write v~¢, for 0 < s < ¢ — 1, for a homogeneous element such that
[os u] = .

S

Let thus m > 1. Then

— [v—{i’"+3m_1

L gmogmoig [ g—=3mT -1
= (=) <3m—3m—1 -1

g—-3m -2

m_gmet (q—3m"1 -1
+(~-1)%"3 ( gm _ gm-1 )[va:y z--T Ty
g—3m -2

Here we apply Lucas’ theorem to get
g-3m1-1 _ g—3m+3m—-3m1 1
3m—3m-1_-1) " 3m—3m-1_1

3m(3n—'m _ 1) 3m _ 3m—1 -1
0 3m —3m-1_1
1.

i

Since g—3™~! = 3"~ 1(3—1+- - -+3™(3—1)+e™ }(3—2)+3™"2(3—1)+- - -+(3-1),

we have
q—3""1 -1\ (1) _
gm _gm-1 ) = \g) =0
Therefore
0=((-1)-1)-vzyz---zy]=—fvzy z---z zy],
q—3m-2 q—3m -2

as requested.
We prove easily, as in [Carl],

[vit172] = [vit1yy] = 0.

We now have to prove that 6; 1 = [v;11y2] — [vi412Y] is central.
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We first show that [v;112y] and [v,11yz] are centralized by . This follows
from
0 = —[vir1[yzy]] = ir1zyy] — 2[vir1yzy] + [virryyz] = [virizy] + [viayal, y),

and , \
0 = [oid lymaway]] = v yeaacly]

=(-1) (;) [v;j‘lmwxyzy] +(-1)* (i) [vi_f’lxmmzyy]
= [[vis1yz] + [virazy), y)-

To prove that 6,1 commutes with x, we will expand, in a variation on the
corresponding argument in [Carl], and proceeding by induction on 3,

0= [’Ui_lili, [Ugy.'l?] - [vgmy]].

We will take a more conceptual approach than in [Carl]. One first proves by
direct easy expansion, using only the extended Jacobi identity, the following
formulas, for appropriate j < i:

[vjzvi] = [vjizl,  [vjyu] = —[vj419]
[vizyv] = [vir1y2] = [vj412y] = 011
[vjv] =0

[vjzyzv] = [vjzyz].

We then use these to compute

0 = [vi_1z, —[vayz] + [vazy]]
= [vi—1z[viyviz]] + [vi12[vyz01Y]]
= [vi—1z[v1yvi]z] — [vicizz[vi1yV1]]
+ [vic1z[vizv|y] — [vic1zy[vize])
= [vi_1z[nylviz] — [vimyzv [viy)]
+ [vi—1z[vizlvy] = [vi-1zv1[v12]Y)
— [vicizyviz]ol] + [vim1zyvr [viz]]
= [vim1zfvrgluiz] - [viz[viyle]
+ [vim1z[vilvry] — [viz[viz]y]
— [vic1zy[viz]vi]
= [vi_1zv1ynx] — [vim 1YV v1T)

— [vizvryz] + [vizyv ]
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+ [vi—1zv1Z01Y] — [Vic1ZZV1V1Y)
— [vizvizy] + [vizTv1Y)]
— [vim1zyvizvr] + [Vic1zyToLv1]
= [0iy12] — 0 — [vip1zyz] + [6ip12] +0— 0~ 0+ 0 — 0 + [vi12y2]
= —[9i+1$],
as desired.
We are left with proving that only one in three of the §; can be nonzero. We

first prove, by induction on k, the formula {[vrz][vry]] = [Vh+k2y] — kOprk. The
basis of the induction is provided by

([vrz][v1y]] = [vrzv1Y] — [VRV12Y] = [Vht17Y] — Ontr,
and then the induction step is
([vrz][vey]] = —[[vne][ve—_1ym]]
= —[[vrz][vk-1y]v1] + [[vrz]V1[VE-1Y]]
= ~[[vntk-12y]v1] + [[Vh+12][vE-1Y]]
= —Optk + [Vhtrzy] — (K — 1)0p1k

= [Vh4k2Y) — kOhtk-
In particular, for h = 1 we have
(1] [viy]) = [vir12y] — 0341,

and also
[[orz][viy]] = —[[viy][vi2]]

= —[viyviz] + [viyzv1]
= [Vit197] + b4

Comparing the two expressions we obtain
(’L + 2)9i+1 =0,
so that 6; can indeed only be nonzero for

j=2 (mod3).
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