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A B S T R A C T  

The simple, modular Lie algebras of Zassenhaus have peculiar features 

in characteristic three. Their second cohomology groups are larger than 

in characteristic p > 3, and they possess a non-degenerate associative 

form. These properties are reflected in the presentations of certain loop 
algebras of these algebras, that  arise naturally in analogy with the graded 

Lie algebra associated to the Nottingham group with respect to its lower 

central series. 

Introduct ion  

In [Carl] we studied the graded Lie algebra L associated to the Nottingham 

group in characteristic p > 3, from the point of view of providing a (finite) 

presentation of it. L is a loop algebra, with respect to a suitable grading, of the 

Witt  algebra W1. The latter has a one-dimensional Schur multiplier. Therefore 
h 

the corresponding loop algebra M of the universal covering W1 of W1 has an 

infinite-dimensional centre. As M is finitely generated, and M / Z ( M )  ~- L, by 

a result of B. n .  Neumann ([Neu] or [Rob, 2.2.3]) the algebra L is not finitely 

presented. We proved in [Carl], however, that M is finitely presented. 

When p is 3, the Witt  algebra W1 is isomorphic to s/(2), and has trivial Schur 

multiplier. Still, the loop algebra L has a central extension M by an infinite- 

dimensional centre which is finitely presented. In this case, the cocycles needed 
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to construct Z(M) are the products of the Killing form on sl(2) and the cyclic 

cohomology (see below) on the polynomial part, in a transposition of the theory 

of [Gar] to the case of positive characteristic. This is dealt with in [Car2]. 

In [Carl] we studied more generally loop algebras of the Zassenhaus algebras 

W,~ in characteristic p > 3. The theory is exactly the same as in the case n = 1. 

It is the purpose of this paper to study finite presentations of the analogous 

loop algebras of the Zassenhaus algebras W= in characteristic 3, for n > 1. As 

we will see, these algebras combine the features of the two cases described above. 

The cohomology of these loop algebras could be calculated with the methods 

developed by Zusmanovich in [Zusl] (see also [Zus2]); however, Zusmanovich 

considers loop algebras of Zassenhaus algebras only in characteristic greater than 

3. We will therefore give a brief self-contained, elementary account of the matter 

here, stressing in particular the role played by the invariant form on W=. 

It is well known (see [Far2] and [Dzhu]) that the Schur multiplier of W,~ has 

dimension n - 1 in characteristic 3; as above, we obtain infinitely many cocycles 

for the loop algebra L. We call these the finite cohomology  cocycles  (which 

are nonclassical in the terminology of Zusmanovich). 

The Killing form of W= is zero, for n > 1; however, because of the characteristic 

3, the algebra W,~ has a nondegenerate associative form [Farl]. This enables us, 

as in [Gar] and [Car2], to use the cyclic cohomology of the polynomial part of the 

loop algebra L to construct infinitely many more cocycles on L. We call these 
the loop cocycles  (these are the classical ones according to Zusmanovich). 

We prove that the central extension M of L obtained via the finite cohomology 

and loop cocycles is finitely presented. Note that by the result of B. H. Neumann 

mentioned above, this implies that  all these cocycles generate a subspace of finite 
codimension in the second cohomology group of L (and also yields an alterna- 

tive method for calculating the second cohomology group of Wn); one could see 
with the methods of Zusmanovich that these cocycles really exhaust the whole 

cohomology group. 

Our proofs basically follow the pattern of [Carl], to which we refer. An argu- 

ment similar to one used in [CMNS] is employed to determine the occurrence of 

the loop cocycles. 

We are grateful to Mike Newman for reading the manuscript and suggesting 

several corrections. 

P r e l i m i n a r i e s  

We use [Jac] and [StrFar] as general references for Lie algebras. A good reference 
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for the facts about  cohomology, central extensions and universal coverings tha t  

we will be using is [Gar]. 

At one point we will use Lucas' theorem [Lucas], which states that  if the two 

nonnegative integers a and b are written p-adically 

a = ao + alp ~- a2p 2 -t- ... + anp ~, b = bo + blp + b2p 2 + "" + bnp ~, 

so tha t  0 < as, bi < p, then 

(ab) =- r I (  ai)bi (mod p). 
i=0 

For a prime-power q, we write ]Fq for the field with q elements. We will use 

Kronecker's delta 
1 if a = b, 

5(a,b) = 0 otherwise. 

We will use several times without explicit mention the generalized Jacobi iden- 

t i ty 

= Z ( - 1 )  

n i=O i n - - 1  

T h e  Z a s s e n h a u s  a l g e b r a s  a n d  t h e i r  l oop  a l g e b r a s  

The Zassenhaus algebras are defined as algebras of special derivations of algebras 

of divided powers in one variable [StrFar], and can be regarded abstract ly as 

vector spaces 

W,~ = W(1;n)  -- {Yi : - 1  < i < q -  2}, 

of dimension q over the field Fp with p elements, p an odd prime, and q -- p~, 

with the product  defined by 

[yiyj] = ( C  + j T l )  - C T J + I ) )  
j i Yi+j. 

These algebras are graded over the integers, weighting the yi by their indices. 

From now on, we will take p =- 3, and n > 1. The corresponding theory for 

p > 3 is dealt with in [Carl], and that  for p -- 3 and n = 1 in [Car2]. 

The original definition by Zassenhaus regarded W,~ as an algebra over Fq, with 

basis e~, for c~ E Fq, and multiplication defined by 

= - 
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A connection between the two presentations, which will be handy later, is given 

by the formulas 

/ = e0 + 
(y-e) 

Yi = - ~ a  a q - 2 - i e a  f o r i r  

We will consider the loop algebra of W~, with respect to a particular grading, 

as in [Carl]. This is a grading over a cyclic group of order q - 1, and it is derived 

from the one over the integers by declaring Y-1 and Yq-2  to be of weight 1. In 

other words, we are viewing modulo q -  1 the opposite grading to the above 

grading over the integers. 

Thus Y q - i  acquires weight i - 1 in this grading, for 2 < i < q, and Y-1 acquires 

weight 1. Therefore all homogeneous component have dimension 1, except that  

the i-th one, for i --- 1 (mod q - 1), has dimension 2, and it is spanned by Y-1 

and Yq-  2. 

Now consider the loop algebra of Wn with respect to the latter grading. That  

is, take first the Lie algebra 

W~ | Fp [t], 

where Fp [t] is a polynomial algebra, and consider the subalgebra L generated by 

the two elements 

x = Y - 1  |  Y = Yq-2  |  

One easily sees that the action of the two generators x and y on L is defined as 

follows. Define formally an element vo with the property 

[v0x] = - x ,  [v0y] = y, 

and elements vi ,  for i > 0, 

q-3 

Then we have, for i >_ 0, 

[v xyy] = . . . . .  = 0, 
q - 4  

[Vi+lXX] = [Vi+lyy] = O. 
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T h e  f in i t e  c o h o m o l o g y  c o c y c l e s  

We give here, for the convenience of the reader, a brief t rea tment  of  the second 

cohomology group of Wn in characteristic 3, in a form tha t  is convenient for our 

purposes. This cohomology group is discussed in [Far2] and [Dzhu]. 

One sees readily tha t  the following maps are 2-cocycles for Wn, in characterist ic  

p = 3 and for n > 5, with respect to the presentat ion of Zassenhaus, 

3 m 

where 1 _< m < n. Independence in cohomology follows from the linear indepen- 

dence of the distinct field automorphisms of F3-. 

We rewrite these cocycles in terms of the Yi, using formulas (y-e). We get, first 

for i , j  r -1 ,  

q--2-- i  q - -2 - - j  3 m 

c~ 

=  2q-i-j+3m-4 

= ( - 1 F +  1 
c~ 

= (-1)5+1 { 0-1 otherwise.if q - 1 divides q - i - j + 3 "~ - 3, 

Now q - 1 I q - i - j + 3 TM - 3 when i + j = 3 TM - 2, and when i + j = q + 3 TM - 3. 

There  are no other  possibilities, as i + j < 2q - 4. Therefore 

( -1)5  i f i + j = 3 m - 2 ,  

Cm(yi,y5) = (--1) j i f i + j = q + 3 m - - 3 ,  
0 otherwise. 

Now the  m a p  

is a coboundary,  as 

( - 1 ) J  i f i + j = 3 ' ~ - 2  
0,~ (yi, yj) = 0 otherwise 

Ore(u, v) = h([uvD, 

where h is the linear map  h: L --+ F3 defined by h(yi) = -5(i, 3 m - 2). We obta in  

tha t  Cm = Cm - Om is a cocycle, for 1 < m < n, where 

( - 1 ) J  i f i + j = q + 3 m - 3 ,  
Cm(Yi, Yj) = 0 otherwise. 
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The same formulas actually hold also when i or j take the value - 1 ,  as the 

extra  e0 does not play a role. We have thus recovered the cocycles of [Dzhu, 

Theorem 2]. 

Take Z to be an abelian Lie algebra with basis 

Zl~ Z2 ,  � 9  ~ Z n - 1 ,  

and construct the universal covering Wn of Wn as a central extension 

0 - ~  Z - ~  W~ ~ W~ -~0 ,  

with multiplication of (preimages of) Yi and yj in Wn defined by 

n- -1  

[y yj] + C m ( y . y j )  �9 zm 
m : l  

The grading over the integers of W~ extends to Wn, and z,~ acquires weight 

q + 3 m - 3 in it. As these weights are distinct, and do not occur in W~ itself, 

we see tha t  W,~ is perfect. (This shows once more that  the cocycles era, for 

1 < m < n, are independent in cohomology.) 

In the opposite grading modulo q - 1 of the grading over the integers, Zm 

acquires weight q - 3 m -+- 1 = q - ( 3  m - 1 ) ,  that  is, the same as y3m_2 . 

Each of the cocycles r will yield infinitely many cocycles of L, the loop algebra 

of W,~. We call these cocycles of L the f in i te  cohomology cocycles, because 

of the way they arise. The extension M of L via all these cocycles can also be 

obtained as a loop algebra of Wn, as in the previous section. In the next section 

we will show tha t  M has infinitely many more cocycles, arising from the loop 

process. 

The loop cocycles for the loop algebra 

I t  is shown in [Far1] that  the following defines an associative form on W n  in 

characteristic 3: 

71(yi,yj) = ( - 1 ) J + t S ( i  + j , q  - 3). 

By this we mean tha t  7? is bilinear and symmetric,  and tha t  for u, v, w E W~ we 

have 

w) = [vw]). 

Now consider the following bilinear maps, for a > 0, 

oop: F,,[t] • Fp[t] --, F,, 

( t i , t  j )  ~-+ j . 5(i + j , a , ) .  
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These are easily seen to be elements (actually a basis) of the first cyclic cohomol- 

ogy group of Fp [t], as they satisfy the identity 

w) + u) +  a,(wu, v) = o 

(see for instance [Zusl]). As shown in [Kas], one can generalize the arguments of 

[Gar] by using the first cyclic cohomology group. 

In fact, proceed as in [Gar] and [Car2], and combine 77 with the a to get the 

following cocycles on the loop algebras L or M (remember that  we are working 

in characteristic p = 3): 

~-3~(yi| ~(q-1)-i, yj | t~(q-1) -j)  
= V(Yi, Yj)" a3a( t~(q-1)-i, tu(q-1)-J) 

= ( - 1 ) / + 1 .  5(i + j , q -  3). 

( - j  - # ) - 5 ( A ( q -  1) - i +  # ( q -  1) - j, 3a) 

= ( - 1 )  i .  (j + t t ) . 5 ( i + j , q -  3 ) - 5 ( ( 1  + # ) ( q -  1) - ( i + j ) , 3 a ) ,  

where we have used the fact that  i + j  = q - 3  is even. Note that  ( s  1) = 

i + j + 3a = q - 3 + 3a is divisible by 3, so that  A + # = 3b for some b. It  follows 

that  the values of a in the above for which the T3a do not obviously vanish on L 

are given by 

3a = 3b(q- 1) - q + 3 = 2q + 3 ( q -  1 ) ( b -  1). 

The first few values of 3a are thus 2q, 5q - 3, 8q - 6 , . . .  

We call the cocyctes ~-3~ corresponding to these values of a the l o o p  cocyc l e s  

of L. To show that  they are linearly independent in the second cohomology group 

of M,  note the calculation, for i = (q - 3)/2, any b > 1, and the corresponding 

value of a as above, 

"r3,~(yi @ t (q-1)-i ,  yi @ t ( 3 b - 1 ) ( q - 1 ) - i )  : ( - 1 )  i 

#o. 

Now the elements Yi | t (q-1)-~ and Yi | t (3b-U(a-1)-j commute in M,  and there 

is one value o f  a for which the cocycle ~'3a does not vanish on the corresponding 

pair. Independence follows. 
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T h e  p r e s e n t a t i o n  

Let now N be the central extension of L via the finite cohomology cocycles and 

the loop cocycles T3a- In the rest of the paper we will show that N is finitely 

presented. As remarked in the Introduction, a result of B. H. Neumann implies 

that  the finite cohomology cocycles and the loop cocycles span a subspace of 

finite codimension in the second cohomology group of L. 

It is not difficult now to write down the action of the generators x and y on 

N, starting from the presentation of L, and keeping into account the cocycles 

we have added. Keeping the notation we have already employed for L, and thus 

slightly abusing it, define formally an element v0 with the property 

[~0x] = - ~ ,  [v0y] = y, 

and elements vi, for i > 0, 

v~ = [ v i - l x y , ~ . ~ . ~ ] .  

q - 3  

Write also 0, -- [v, yx] - [vixy]. 
Then we have, for i > 0, 

[v~xy~:5:.Sy] = 0, 
J 

for 0 < j < q -  4, and 

j r  m - 2 , f o r  l < ra < n, 

(Rels). [vixy ~ yx] -= [vixy ~ yy] = 0, 
q--3 m --2 q--3 m --2 

[v ,+lxx]  = [v,+lyy] = 0, 

[e,z] = [o~y] = o, 
0~=0 fori~2(mod3). 

Now consider the Lie algebra Q given by the presentation 

Q = (  x,y: 

(Pres) 

for 1 _< m < n, 

[ y x ~ : . ~ y ] ,  

J 

for O<_j ~_ q - 4 ,  a n d j  # q - 3  "~ - 2 ,  for 1 < m < n 

[yx , ~  yx], for 1 < m < n 
q . 3  m --2 

q 

[y ~ : . ~ y  ~_: : :2yx] ,  
q--1 q--5 

[ y~ : : i _~y~_: : : . ~y~x l  = [ y ~ : 4 = 2 y ~ _ : ~ x y x ]  ). 
q--1 q--3 q--1 q-3  
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Note that  the relations in (Pres) are a subset of those of (Rels). We want to 

show that  Q is isomorphic to N, by showing that  the defining relations (Pres) of 

Q imply all of (Rels). 

We follow the pat tern of [Carl], omitting the steps that  are identical, and 

dealing only with the peculiarities for p = 3. 

We have immediately 

0 = [yx ~ [yxy]] = - [y  ~ yy], 
q-3 m-3  q--3 TM-2 

so that  [yx ,~2,'f.~ Y] is central for all m. The expansion 
q--3 m --2 

0 = [[y ~:::_~l[y ~:4;_~]1 
(q--l)/2 (q--1)/2 

yields t h e  r e l a t i o n  [ v l x y  ] ---- [v lyx] ,  or 81 --~ O. 

So we can suppose (Rels) are verified for values less than some i > 2. Let 

v = vi E Qi(q-1). In [Carl] we proved by induction on j 

[v/y~_:5:.~y] = 0 
J 

for 0 < j < q -  4, and j ~- q -  3 m - 2, for 1 _< m < n. For these special values 

we now show 

[ ~ y  ~ yx] = [ ~ y  ~ xy] = [~xy ~ 2 ~  yy] = 0. 
q-3  m-2  q-3"~--2 q--3 m-2  

Proving [vxy ~ yy] = 0 is straightforward, as in [Carl]. For the rest, let 
q--3 m-2  

j = q - 3 m - 2 ,  for l < m < n .  

We begin, as in [Carl], with 

o = [vx[y ~ yll 
q--3m--1 

= [vx[y ~_:/;_~]y]- [~xy[y ~_:5:2]] 
q--3m--1 q--3m--1 

q--3m--1 

- ( - 1 ) q - 3 ~ - 2 ( q  - 3 m - 1)[vxy ~ yx] - (-1)q-a'~-l[vxy ~ y] 
q--3m--2 q--3m--I 

= -[vxy ~ xy] + [vxy ~ y~]. 
q--3,~--2 q-3,~--2 
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Now we want  to  prove t ha t  the  two c o m m u t a t o r s  vanish separate ly .  The  ar- 

gumen t  of [Carl]  for m = 1 works also in charac te r i s t ic  3, so we have to  consider  

the  case m > 1, for which there  is no coun te rpa r t  in [Carl] .  Here and  in the  

following, wr i te  v -8 ,  for 0 _~ s < q - 1, for a homogeneous  e l e m e n t  such t h a t  

Iv - 8  - -  v 

S 

Let  thus  m > 1. Then  

0 =  [ 'U- -3m+3m-l+l [y  X ' ' ' X  y]] 

q--3 '~-1 --1 

= ]Y] 

q_3,,~-~_l 

= (--1)3m-3"~-1-1 ( q - -  3 m - 1 - -  1 "~[vyx xy] 
\ 3  m -- 3 m - i  -- 1 ]  

q--3 m --2 

- ( q - - 3  m - i  --  I ~ [ v x y  x y ] .  
+ ( - 1 )  3m-3"  ' \ 3 ~ -  3 m - I  ] 

q--3 m --2 

Here we a p p l y  Lucas '  theorem to get  

( q - - 3 m - - l - - l ' ~ = ( q - - 3 m + 3 m - - 3 m - - l - - 1 )  

3 m -- 3 m-1 -- 1 ]  \ 3 m -- 3 m-1 - 1 

= 1 .  

Since q-3  m-1 = 3'~-1 ( 3 - 1 +  -- - + 3 " ~ ( 3 - - 1 ) + e m - l ( 3 - - 2 ) + 3 m - 2 ( 3 - - 1 ) +  "" -+(3- -1) ,  

we have (q (1) 
3 m - 3 m - 1  ] = = 0 .  

There fore  

0 = ( ( - 1 ) .  1) .  [vxy ~ y] = -[vxy  ~ xy], 
q - 3  m - 2  q--3 ' ~ - 2  

as reques ted .  

We prove easily, as in [Carl] ,  

[Vi+lXX] ~-- [Vi+lyy] = O. 

We now have to  prove tha t  0~+1 ---- [vi+lyx] - [v~+lxy] is central .  
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We first show that  [vi+~xy] and [v~+~yx] are centralized by y. This follows 

from 

0 ---- --[Vi+I [yxy]] = [ V i + l x y y ] -  2[Vi+lyxy] ~-[Vi+lyyx] ~-- [[Vi+lXy] "~ [Vi+lyX], y], 

and 

: (44) 
To prove that  0i+1 commutes with x, we will expand, in a variation on the 

corresponding argument in [Carl], and proceeding by induction on i, 

o = [ ~ _ , ~ ,  [ v2yx]  - [v2~y]]. 

We will take a more conceptual approach than in [Carl]. One first proves by 

direct easy expansion, using only the extended Jacobi identity, the following 

formulas, for appropriate j _< i: 

[Vj:r, yVl] -'~ [Vj+lYX] --[Vj+IXy] = Oj+l 

[vj~l] = 0 

We then use these to compute 

0 = [Vi_lX , --[v2yx ] "1-[v2xy]] 

= [Vi--lX[VlyVlX]] Jr 

~. [Vi_lX[VlyVl]X ] -- 

-t-[Vi--lX[VlXVl]y] 

= [ ~ , _ l ~ [ ~ y ] v ~ ] -  

+ [Vi-lX[VlX]Vly] 

= [ ~ - ~ x [ v ~ y ] ~ i ~ ] -  

+ [v~-~X[~l~]~y] 

- [~ , - l~y[VlX]Vl ]  

[Vi-lX[VlXVly]] 

[V~-lXX[VlyVl]] 

- [ v , _ l x y [ v l x v l ] ]  

- [ ~ - l X ~ [ v l x ] y ]  

+ [V~_lXy~[~]] 

- [~Z[Vl~ ]y ]  

[Vi-lXVlyVlX] - [Vi-lXyVlVlX] 

- [v, z v ~ ]  + [v,~yv~x] 



72 A. C A R A N T I  Isr.  J. Ma th .  

"~ [ V i _ I X V l X V l y  ] -- [ V i _ I X X V l V l y  ] 

- [v~xvixy] + [~x~v~y] 

- [ v ~ _ ~ x y ~ l ]  + [ v ~ - l x y ~ v ~ v i l  

= [~ i+ lX]  --  0 --  [V i+lxyx]  -~ [Oi+lX] ~- 0 -- 0 -- 0 ~- 0 -- 0 -}- [Vi+lXyX ] 

= - [ 0 i + l x ] ,  

as desired. 

We are left with proving that  only one in three of the 0~ can be nonzero. We 

first prove, by induction on k, the formula [[VhX][vky]] = [Vh+kXy] -- kOh+k. The 

basis of the induction is provided by 

[[VhX] [Vly]] = [VhXVly] -- [VhVlXy] : [Vh+lXy] -- 0 h + l ,  

and then the induction step is 

[[VhX][Vky]] ---- - -[[~hXI[V~-~yVl]]  

: - - [[Vh§ "~ [[Vh§ 

= --Oh+k + [Vh+kXy] -- ( k  -- 1)Oh+k 

-= [Vh+kXy] -- kOh+k. 

In particular, for h = 1 we have 

and also 

[ [v~] [v~v] ]  = [v~+l~y]  - i o ,+~ ,  

[Iv1 x] [v~ y]] = - [[v~y] [ . lX]] 

= [v~+lyx] + ~i+1. 

Comparing the two expressions we obtain 

(i + 2)0i+1 = 0, 

so tha t  0j can indeed only be nonzero for 

j=--2 (mod3) .  
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